超级电容充电方法

随着动力电池的发展和应用,动力电池的充电技术也应运而生,目前所采用的比较传统的充电方式有恒流充电和恒压充电。

恒流充电是在充电过程中,全程采用恒定不变的电流进行充电,一般适用于在电流不大的情况下,进行长时间充电;

恒压充电则是采用动力电池可接受的恒定的电压进行充电;

之后又出现了上述两种充电方式的组合模式,如

恒流限压充电(充电到限定电压后,通过减小充电电流限制电压上升)、

恒压限流充电(充电电压恒定,充电电流始终小于限定的电流值)

先恒流后恒压充电(先恒定电流充电,当充电到指定电压时转为恒定电压充电)等,

因为这些方式没有比较准确的控制而且模式比较单一,在充电时间、充电效率等方面并不十分理想;但由于所需控制量少、实现简单,这些方式在很多场合下仍被采用[31]。

由于动力电池存在固有的可接受充电电流曲线,随着充电时间的增加,可接受充电电流随之减少,因此采用恒压或恒流的充电方式,充电过程始终小于或大于电池可接受的充电电流的状态下进行,从而降低了充电效率,延长了充电时间。

因此根据动力电池的自身充电规律,可以把充电过程细分为若干阶段,各个阶段采用不同的充电模式,或者根据电池的不同状态,采用相应的充电模式,使整个充电过程更符合动力电池的充电特性。研究表明这种方式可以有效地减小充电时间、提高充电电量,但该方式控制方式比较复杂,通用性不强[32]。

脉冲充电方式也是常用的充电模式之一。脉动式充电是指充电电流或电压以脉冲的形式加在蓄电池两端进行充电,可以缩短充电时间,增大充放电容量,减少电池发热,提高充电效率。有实验表明[33][34]如果可以提供正、负相间的电流脉冲,就能增加动力电池的循环使用次数,延长使用寿命。但现有的脉冲充电器的充电脉冲宽度和间歇时间大多是固定的,无法根据充电状态进行相应的改变(可否考虑PWM),因此充电效果受到了影响。

超级电容器的储能原理不同于蓄电池,其充放电过程的容量状态有其自身的特点。超级电容器受充放电电流、温度、充放电循环次数等因素影响,其中充放电流是最主要的影响因素。由于超级电容器一般采用恒流限压充电的方法,本文主要分析恒流充电条件下的超级电容器特性。恒流限压充电的方法为控制最高电压为Umax,恒流充电结束后转入恒压浮充,直到超级电容器充满。采用这种充电方法的优点是:第一阶段采用较大电流以节省充电时间,后期采用恒压充电可在充电结束前达到小电流充电,既保证充满,又可避免超级电容器内部高温而影响超级电容器的容量特性。

超级电容器具有非常高的功率密度,为电池的10—100倍,适用于短时间高功率输出;充电速度快且模式简单,可以采用大电流充电,能在几十秒到数分钟内完成充电过程,是真正意义上的快速充电;无需检测是否充满,过充无危险;

充电过程完成后,如果再继续充电,就称为过充,(对于蓄电池,过充将导致电解质中的水电离)。

浮充是蓄电池在使用过程中一重要概念,其性能是控制电路设计的关键。对蓄电池进行浮充时要严格控制浮充电压,浮充电压高意味着存储能量大。质量差的蓄电池浮充电压值一般较小,人为地提高浮充电压值对蓄电池有害无益。

所有的蓄电池充电过程都有快充、过充和浮充3个阶段,每个阶段都有不同的充电要求。现行的充电方法主要有恒流充电、恒压充电、恒压限流充电、间隙式充电法等,这些充电方法各有利弊。本文设计的控制器采取综合使用各充电方法应用于3阶段充电。
(1)快充阶段:蓄电池能够接受最大功率时,采取太阳能电池最大功率点跟踪对蓄电池进行充电。当蓄电池端电压达到转换门限值后,进入过充阶段。
(2)过充阶段:采用恒压充电法,给蓄电池一个较高的恒定电压,同时检测充电电流。当充电电流降到低于转换门限值时,认为蓄电池电量已充满,充电电路转到浮充阶段。
(3)浮充阶段:蓄电池一旦接近全充满时,其内部的大部分活性物质已经恢复成原来的状态, 这时候为防止过充,采用比正常充电更低的充电电压进行充电。浮充电压根据蓄电池的实际要求设定,对12 V的VRLA蓄电池来说,一般在13.4V~14.4

超级电容充电方法

avatar

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: